Вход





Designed by:
SiteGround web hosting Joomla Templates
, Powered by Joomla! and designed by SiteGround web hosting
Алгебра 7-9

Рабочая программа учебного предмета «Алгебра»

7-9 классы

Рабочая программа составлена в соответствии с Федеральным государственным образовательным стандартом основного общего образования (утвержден приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 г. N 1897, с изменениями и дополнениями), с  учетом примерной программы основного общего образования по математике  (Примерная основная образовательная программа основного общего образования, одобрена решением федерального учебно-методического объединения по общему образованию,   протокол от 8 апреля2015 г. № 1/15),по программе:  Алгебра. Сборник рабочих программ. 7—9 классы : пособие для учителей общеобразоват. организаций / сост. Т. А. Бурмистрова М. : Просвещение, 2014.

На изучение  алгебры  в 7  классе  отводится 105 часов в год, из расчета 3 часа в неделю, 35 учебных недель.

На изучение  алгебры  в 8  классе  отводится 105 часов в год, из расчета 3 часа в неделю, 35 учебных недель

На изучение алгебры в 9 классе отводится 102 часа в год, из расчета 3 часа в неделю.

 

1. Планируемые результаты освоения учебного предмета

Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

Элементы теории множеств и математической логики

  • Оперировать на базовом уровне[1] понятиями: множество, элемент множества, подмножество, принадлежность;
  • задавать множества перечислением их элементов;
  • находить пересечение, объединение, подмножество в простейших ситуациях;
  • оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;
  • приводить примеры и контрпримеры для подтверждения своих высказываний.

В повседневной жизни и при изучении других предметов:

  • использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;
  • использовать свойства чисел и правила действий при выполнении вычислений;
  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;
  • выполнять округление рациональных чисел в соответствии с правилами;
  • оценивать значение квадратного корня из положительного целого числа;
  • распознавать рациональные и иррациональные числа;
  • сравнивать числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;
  • выполнять сравнение чисел в реальных ситуациях;
  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

  • Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;
  • выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;
  • использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;
  • выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.

В повседневной жизни и при изучении других предметов:

  • понимать смысл записи числа в стандартном виде;
  • оперировать на базовом уровне понятием «стандартная запись числа».

Уравнения и неравенства

  • Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;
  • проверять справедливость числовых равенств и неравенств;
  • решать линейные неравенства и несложные неравенства, сводящиеся к линейным;
  • решать системы несложных линейных уравнений, неравенств;
  • проверять, является ли данное число решением уравнения (неравенства);
  • решать квадратные уравнения по формуле корней квадратного уравнения;
  • изображать решения неравенств и их систем на числовой прямой.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.

Функции

  • Находить значение функции по заданному значению аргумента;
  • находить значение аргумента по заданному значению функции в несложных ситуациях;
  • определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости;
  • по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;
  • строить график линейной функции;
  • проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);
  • определять приближенные значения координат точки пересечения графиков функций;
  • оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
  • решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчетом без применения формул.

В повседневной жизни и при изучении других предметов:

  • использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);
  • использовать свойства линейной функции и ее график при решении задач из других учебных предметов.

Статистика и теория вероятностей

  • Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;
  • решать простейшие комбинаторные задачи методом прямого и организованного перебора;
  • представлять данные в виде таблиц, диаграмм, графиков;
  • читать информацию, представленную в виде таблицы, диаграммы, графика;
  • определять основные статистические характеристики числовых наборов;
  • оценивать вероятность события в простейших случаях;
  • иметь представление о роли закона больших чисел в массовых явлениях.

В повседневной жизни и при изучении других предметов:

  • оценивать количество возможных вариантов методом перебора;
  • иметь представление о роли практически достоверных и маловероятных событий;
  • сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;
  • оценивать вероятность реальных событий и явлений в несложных ситуациях.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;
  • строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;
  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
  • составлять план решения задачи;
  • выделять этапы решения задачи;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;
  • решать задачи на нахождение части числа и числа по его части;
  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
  • находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;
  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).

История математики

  • Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
  • понимать роль математики в развитии России.

Методы математики

  • Выбирать подходящий изученный метод для решения изученных типов математических задач;
  • Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.

Выпускник получит возможность научиться в 7-9 классах для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях

Элементы теории множеств и математической логики

  • Оперировать[2] понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;
  • изображать множества и отношение множеств с помощью кругов Эйлера;
  • определять принадлежность элемента множеству, объединению и пересечению множеств;
  • задавать множество с помощью перечисления элементов, словесного описания;
  • оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);
  • строить высказывания, отрицания высказываний.

В повседневной жизни и при изучении других предметов:

  • строить цепочки умозаключений на основе использования правил логики;
  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений.

Числа

  • Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
  • понимать и объяснять смысл позиционной записи натурального числа;
  • выполнять вычисления, в том числе с использованием приемов рациональных вычислений;
  • выполнять округление рациональных чисел с заданной точностью;
  • сравнивать рациональные и иррациональные числа;
  • представлять рациональное число в виде десятичной дроби
  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;
  • находить НОД и НОК чисел и использовать их при решении задач.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;
  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;
  • составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;
  • записывать и округлять числовые значения реальных величин с использованием разных систем измерения.

Тождественные преобразования

  • Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;
  • выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);
  • выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;
  • выделять квадрат суммы и разности одночленов;
  • раскладывать на множители квадратный   трехчлен;
  • выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;
  • выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;
  • выполнять преобразования выражений, содержащих квадратные корни;
  • выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;
  • выполнять преобразования выражений, содержащих модуль.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с числами, записанными в стандартном виде;
  • выполнять преобразования алгебраических выражений при решении задач других учебных предметов.

Уравнения и неравенства

  • Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);
  • решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;
  • решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;
  • решать дробно-линейные уравнения;
  • решать простейшие иррациональные уравнения вида , ;
  • решать уравнения вида ;
  • решать уравнения способом разложения на множители и замены переменной;
  • использовать метод интервалов для решения целых и дробно-рациональных неравенств;
  • решать линейные уравнения и неравенства с параметрами;
  • решать несложные квадратные уравнения с параметром;
  • решать несложные системы линейных уравнений с параметрами;
  • решать несложные уравнения в целых числах.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов;
  • выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;
  • выбирать соответствующие уравнения, неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи;
  • уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи.

Функции

  • Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, четность/нечетность функции;
  • строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: , ,, ;
  • на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций ;
  • составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;
  • исследовать функцию по ее графику;
  • находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;
  • оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
  • решать задачи на арифметическую и геометрическую прогрессию.

В повседневной жизни и при изучении других предметов:

  • иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;
  • использовать свойства и график квадратичной функции при решении задач из других учебных предметов.

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;
  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;
  • различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;
  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);
  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;
  • выделять этапы решения задачи и содержание каждого этапа;
  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
  • анализировать затруднения при решении задач;
  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;
  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;
  • решать разнообразные задачи «на части»,
  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
  • владеть основными методами решения задач на смеси, сплавы, концентрации;
  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
  • решать несложные задачи по математической статистике;
  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;
  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
  • решать задачи на движение по реке, рассматривая разные системы отсчета.

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;
  • извлекать информацию, представленную в таблицах, на диаграммах, графиках;
  • составлять таблицы, строить диаграммы и графики на основе данных;
  • оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;
  • применять правило произведения при решении комбинаторных задач;
  • оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями;
  • представлять информацию с помощью кругов Эйлера;
  • решать задачи на вычисление вероятности с подсчетом количества вариантов с помощью комбинаторики.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;
  • определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;
  • оценивать вероятность реальных событий и явлений.

История математики

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;
  • понимать роль математики в развитии России.

Методы математики

  • Используя изученные методы, проводить доказательство, выполнять опровержение;
  • выбирать изученные методы и их комбинации для решения математических задач;
  • использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;
  • применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.

Выпускник получит возможность научиться в 7-9 классах для успешного продолжения образования на углубленном уровне

Элементы теории множеств и математической логики

  • Свободно оперировать[3] понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств, способы задание множества;
  • задавать множества разными способами;
  • проверять выполнение характеристического свойства множества;
  • свободно оперировать понятиями: высказывание, истинность и ложность высказывания, сложные и простые высказывания, отрицание высказываний; истинность и ложность утверждения и его отрицания, операции над высказываниями: и, или, не; условные высказывания (импликации);
  • строить высказывания с использованием законов алгебры высказываний.

В повседневной жизни и при изучении других предметов:

  • строить рассуждения на основе использования правил логики;
  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа

  • Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
  • понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;
  • переводить числа из одной системы записи (системы счисления) в другую;
  • доказывать и использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11 суммы и произведения чисел при выполнении вычислений и решении задач;
  • выполнять округление рациональных и иррациональных чисел с заданной точностью;
  • сравнивать действительные числа разными способами;
  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;
  • находить НОД и НОК чисел разными способами и использовать их при решении задач;
  • выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней.

В повседневной жизни и при изучении других предметов:

  • выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;
  • записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;
  • составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

  • Свободно оперировать понятиями степени с целым и дробным показателем;
  • выполнять доказательство свойств степени с целыми и дробными показателями;
  • оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена;
  • свободно владеть приемами преобразования целых и дробно-рациональных выражений;
  • выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приемов;
  • использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трехчлена и для решения задач, в том числе задач с параметрами на основе квадратного трехчлена;
  • выполнять деление многочлена на многочлен с остатком;
  • доказывать свойства квадратных корней и корней степени n;
  • выполнять преобразования выражений, содержащих квадратные корни, корни степени n;
  • свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;
  • выполнять различные преобразования выражений, содержащих модули.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;
  • выполнять преобразования рациональных выражений при решении задач других учебных предметов;
  • выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей.

Уравнения и неравенства

  • Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;
  • решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;
  • знать теорему Виета для уравнений степени выше второй;
  • понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;
  • владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;
  • использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;
  • решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;
  • владеть разными методами доказательства неравенств;
  • решать уравнения в целых числах;
  • изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами.

В повседневной жизни и при изучении других предметов:

  • составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;
  • выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;
  • составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;
  • составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты.

Функции

  • Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, четность/нечетность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,
  • строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, ;
  • использовать преобразования графика функции  для построения графиков функций ;
  • анализировать свойства функций и вид графика в зависимости от параметров;
  • свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;
  • использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость;
  • исследовать последовательности, заданные рекуррентно;
  • решать комбинированные задачи на арифметическую и геометрическую прогрессии.

В повседневной жизни и при изучении других предметов:

  • конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;
  • использовать графики зависимостей для исследования реальных процессов и явлений;
  • конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета.

Статистика и теория вероятностей

  • Свободно оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;
  • выбирать наиболее удобный способ представления информации, адекватный ее свойствам и целям анализа;
  • вычислять числовые характеристики выборки;
  • свободно оперировать понятиями: факториал числа, перестановки, сочетания и размещения, треугольник Паскаля;
  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;
  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;
  • знать примеры случайных величин, и вычислять их статистические характеристики;
  • использовать формулы комбинаторики при решении комбинаторных задач;
  • решать задачи на вычисление вероятности в том числе с использованием формул.

В повседневной жизни и при изучении других предметов:

  • представлять информацию о реальных процессах и явлениях способом, адекватным ее свойствам и цели исследования;
  • анализировать и сравнивать статистические характеристики выборок, полученных в процессе решения прикладной задачи, изучения реального явления, решения задачи из других учебных предметов;
  • оценивать вероятность реальных событий и явлений в различных ситуациях.

Текстовые задачи

  • Решать простые и сложные задачи, а также задачи повышенной трудности и выделять их математическую основу;
  • распознавать разные виды и типы задач;
  • использовать разные краткие записи как модели текстов сложных задач и задач повышенной сложности для построения поисковой схемы и решения задач, выбирать оптимальную для рассматриваемой в задаче ситуации модель текста задачи;
  • различать модель текста и модель решения задачи, конструировать к одной модели решения сложных задач разные модели текста задачи;
  • знать и применять три способа поиска решения задач (от требования к условию и от условия к требованию, комбинированный);
  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;
  • выделять этапы решения задачи и содержание каждого этапа;
  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
  • анализировать затруднения при решении задач;
  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • изменять условие задач (количественные или качественные данные), исследовать измененное преобразованное;
  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях, конструировать новые ситуации на основе изменения условий задачи при движении по реке;
  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;
  • решать разнообразные задачи «на части»;
  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
  • объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
  • владеть основными методами решения задач на смеси, сплавы, концентрации, использовать их в новых ситуациях по отношению к изученным в процессе обучения;
  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
  • решать несложные задачи по математической статистике;
  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • конструировать новые для данной задачи задачные ситуации с учетом реальных характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
  • решать задачи на движение по реке, рассматривая разные системы отсчета;
  • конструировать задачные ситуации, приближенные к реальной действительности.

История математики

  • Понимать математику как строго организованную систему научных знаний, в частности владеть представлениями об аксиоматическом построении геометрии и первичными представлениями о неевклидовых геометриях;
  • рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России.

Методы математики

  • Владеть знаниями о различных методах обоснования и опровержения математических утверждений и самостоятельно применять их;
  • владеть навыками анализа условия задачи и определения подходящих для решения задач изученных методов или их комбинаций;
  • характеризовать произведения искусства с учетом математических закономерностей в природе, использовать математические закономерности в самостоятельном творчестве.

 


2. Содержание учебного предмета

Числа

Рациональные числа

Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью.

Иррациональные числа

Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказательств в алгебре. Иррациональность числа . Применение в геометрии. Сравнение иррациональных чисел. Множество действительных чисел.

Тождественные преобразования

Числовые и буквенные выражения

Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.

Целые выражения

Степень с натуральным показателем и ее свойства. Преобразования выражений, содержащих степени с натуральным показателем.

Одночлен, многочлен. Действия с одночленами и многочленами (сложение, вычитание, умножение). Формулы сокращенного умножения: разность квадратов, квадрат суммы и разности. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения. Квадратный трехчлен, разложение квадратного трехчлена на множители.

Дробно-рациональные выражения

Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление. Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень.

Преобразование выражений, содержащих знак модуля.

Квадратные корни

Арифметический квадратный корень. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.

Уравнения и неравенства

Равенства

Числовое равенство. Свойства числовых равенств. Равенство с переменной.

Уравнения

Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения (область допустимых значений переменной).

Линейное уравнение и его корни

Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.

Квадратное уравнение и его корни

Квадратные уравнения. Неполные квадратные уравнения. Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Теорема Виета. Теорема, обратная теореме Виета. Решение квадратных уравнений:использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.

Дробно-рациональные уравнения

Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений.

Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений.

Простейшие иррациональные уравнения вида , .

Уравнения вида.Уравнения в целых числах.

Системы уравнений

Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными.

Понятие системы уравнений. Решение системы уравнений.

Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки.

Системы линейных уравнений с параметром.

Неравенства

Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.

Неравенство с переменной. Строгие и нестрогие неравенства. Область определения неравенства (область допустимых значений переменной).

Решение линейных неравенств.

Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.

Решение целых и дробно-рациональных неравенств методом интервалов.

Системы неравенств

Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных, квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.

Системы неравенств с двумя переменными.

Функции

Понятие функции

Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, четность/нечетность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по ее графику.

Представление об асимптотах.

Непрерывность функции. Кусочно заданные функции.

Линейная функция

Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от ее углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.

Квадратичная функция

Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.

Обратная пропорциональность

Свойства функции . Гипербола.

Графики функций. Преобразование графика функции  для построения графиков функций вида .

Графики функций , ,, .

Последовательности и прогрессии

Числовая последовательность. Примеры числовых последовательностей. Бесконечные последовательности. Арифметическая прогрессия и ее свойства. Геометрическая прогрессия. Формула общего члена и суммы n первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия.

Решение текстовых задач

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объемов выполняемых работ при совместной работе.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).

Статистика и теория вероятностей

Статистика

Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.

Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.

Случайные события

Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.

Элементы комбинаторики

Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.

Случайные величины

Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.

Арифметическая и геометрическая прогрессии

История математики

Возникновение математики как науки, этапы ее развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.

Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырех. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э. Галуа.

Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.

От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.

Геометрия и искусство. Геометрические закономерности окружающего мира.

Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.

Роль российских ученых в развитии математики: Л. Эйлер. Н.И. Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н. Колмогоров.

Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н. Крылов. Космическая программа и М.В. Келдыш.


3. Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы

7 класс

№ урока

Название темы

Кол-во часов

Вводное повторение( 2 часа)

1-2

Вводное повторение

2

ГЛАВА I. Выражения, тождества, уравнения( 22 часа)

Выражения( 6 часов)

3-4

Числовые  выражения

2

5-6

Выражения с переменными

2

7-8

Сравнение  значений  выражений

2

Преобразование выражений( 7 часов)

9-10

Свойства действий над числами

2

11-12

Тождества.  Тождественные преобразования выражений

2

13

Административная контрольная работа (вход)

1

14

Обобщающий урок по теме: «Преобразование выражений»

1

15

Контрольная работа №1по теме: «Преобразование выражений»

1

Уравнения с одной переменной( 9 часов)

16

Уравнение и его корни

1

17-18

Линейное уравнение с одной переменной

2

19-20

Решение задач с помощью уравнений

2

21

Среднее арифметическое, размах и мода.

1

22

Медиана как статистическая характеристика

1

23

Обобщающий урок по теме: «Уравнения с одной переменной»

1

24

Контрольная работа №2 по теме «Уравнения с одной переменной»

1

Глава II. Функции( 11 часов)

Функции и их графики                 ( 5 часов)

25

Что такое функция

1

26-27

Вычисление значений функции по формуле

2

28-29

График функции

2

Линейная функция              ( 6 часов)

30-31

Прямая  пропорциональность и ее график

2

32-33

Линейная функция и ее график

2

34

Обобщающий урок по теме: «Функции»

1

35

Контрольная работа №3 по теме «Функции»

1

Глава III. Степень с натуральным показателем( 13 часов)

Степень и ее свойства   ( 5 часов)

36

Определение степени с натуральным показателем.

1

37-38

Умножение и деление степеней с одинаковыми основаниями.

2

39-40

Возведение в степень произведения и степени

2

Одночлены( 8 часов)

41

Одночлен и  его стандартный  вид

1

42-43

Умножение одночленов.Возведение одночлена в степень.

2

44

Контрольная работа за 1 полугодие

1

45-46

Функции у= х2 и  у=х3 и их графики

2

47

Обобщающий урок по теме « Степень с натуральным показателем» . Подготовка к контрольной работе.

1

48

Контрольная работа №4 по теме «Степень и ее свойства. Одночлены»

1

Глава IV. Многочлены ( 19 часов)

Сумма и разность многочленов ( 5 часов)

49-50

Многочлен и  его стандартный  вид

2

51-53

Сложение и вычитание многочленов

3

Произведение одночлена и  многочлена( 6 часов)

54-55

Умножения одночлена на многочлен.

2

56-58

Вынесение общего множителя за скобки

3

59

Контрольная работа №5 по теме:

«Произведение одночлена и  многочлена»

1

Произведение  многочленов( 8 часов)

60-62

Умножения многочлена на многочлен

3

63-65

Разложение многочлена на множители способом группировки

3

66

Обобщающий урок по теме:«Произведение  многочленов»

1

67

Контрольная работа №6 по теме:

«Произведение  многочленов»

1

Глава V. Формулы сокращенного умножения( 20 часов)

Квадрат суммы и квадрат разности( 6 часов)

68-71

Возведение в квадрат и в куб суммы и разности двух выражений

4

72-73

Разложение на множители с помощью формул квадрата суммы и квадрата разности.

2

Разность квадратов. Сумма и разность кубов (8 часов)

74-75

Умножение разности двух выражений на их сумму

2

76-77

Разложение разности квадратов  на множители.

2

78

Контрольная работа №7 по теме :«Квадрат суммы и квадрат разности. Разность квадратов»

1

79-81

Разложение  на множители суммы и  разности кубов

3

Преобразование целых выражений (6 часов)

82-83

Преобразование целых выражений в многочлен

2

84-86

Применение различных способов для разложения на множители

3

87

Контрольная работа №8 по теме :

« Разложение  на множители суммы и  разности кубов. Преобразование целых выражений»

1

Глава VI. Системы линейных уравнений( 12 часов)

Линейные уравнения с двумя переменными и их системы( 5 часов)

88

Линейное  уравнение с двумя переменными

1

89-90

График линейного уравнения с двумя переменными.

2

91-92

Системы  линейных уравнений с двумя переменными

2

Решение систем линейных уравнений( 7 часов)

93-94

Способ подстановки

2

95-96

Способ сложения

2

97-98

Решение задач с помощью систем уравнений

2

99

Контрольная работа №9 по теме :« Решение систем линейных уравнений»

1

 

Итоговое повторение( 6часов)

101-104

Итоговое повторение

5

105

Итоговая контрольная работа

1


8 класс

п/п

Название темы

Кол час

Вводное повторение  (5 часов)

1-5

Вводное повторение

5

Рациональные дроби и их свойства (5 часов)

6-7

Рациональные выражения

2

8

Основное свойство дроби

1

9

Сокращение дробей

1

10

Основное свойство дроби. Сокращение дробей

1

Сумма и разность дробей  (7 часов)

11-12

Сложение и вычитание дробей с одинаковыми знаменателями

2

13-16

Сложение и вычитание дробей с разными знаменателями

4

17

Контрольная работа №1 по теме: «Сложение и вычитание дробей»

1

Произведение и частные дробей  (11 часов)

18-19

Умножение дробей. Возведение дроби в степень

2

20-21

Деление дробей

2

22-24

Преобразование рациональных выражений

3

25-26

Функция y=k/xи её свойства

2

27

Обобщающий урок по теме: «Умножение и деление рациональных дробей»

1

28

Контрольная работа №2 по теме: «Умножение и деление рациональных дробей»

1

Действительные числа (2 часа)

29

Рациональные числа

1

30

Иррациональные числа

1

Арифметический квадратный корень  (5 часов)

31

Квадратный корень. Арифметический квадратный корень

1

32-33

Уравнение x2=a

2

34

Нахождение приближённых значений квадратного корня

1

35

Функция y=xи её график

1

Свойства арифметического квадратного корня  (3 часа)

36

Квадратный корень из произведения и дроби

1

37

Квадратный корень из степени

1

38

Контрольная работа №3 по теме: «Свойства арифметического квадратного корня»

1

Применение свойств арифметического квадратного корня  (8 часов)

39

Вынесение множителя из-под знака корня

1

40

Внесение множителя под знак корня

1

41

Административная контрольная работа за 1 полугодие

1

42-44

Преобразование выражений, содержащих квадратные корни

3

45

Обобщающий урок по теме: «Преобразование выражений, содержащих квадратные корни»

1

46

Контрольная работа №4 по теме: «Преобразование выражений, содержащих квадратные корни»

1

Квадратное уравнение и его корни  (12 часов)

47-48

Неполные квадратные уравнения

2

49-51

Формула корней квадратного уравнения

3

52-54

Решение задач с помощью квадратных уравнений

3

55-56

Теорема Виета

2

57

Обобщающий урок по теме: «Квадратные уравнения»

1

58

Контрольная работа №5 по теме: «Квадратные уравнения»

1

Дробные рациональные уравнения (10 часов)

59-61

Решение дробных рациональных уравнений

3

62-65

Решение задач с помощью рациональных уравнений

4

66

Графический способ решения уравнений

1

67

Обобщающий урок по теме: «Дробные рациональные уравнения»

1

68

Контрольная работа №6 по теме: «Дробные рациональные уравнения»

1

Числовые неравенства и их свойства (7 часов)

69

Числовые неравенства

1

70

Свойства числовых неравенств

1

71-72

Сложение и умножение числовых неравенств

2

73

Погрешность и точность приближения

1

74

Обобщающий урок по теме: «Свойства числовых неравенств»

1

75

Контрольная работа №7 по теме: «Свойства числовых неравенств»

1

Неравенства с одной переменной и их системы (13 часов)

76

Пересечение и объединение множеств

1

77

Числовые промежутки

1

78-81

Решение неравенств с одной переменной

4

82-85

Решение систем неравенств с одной переменной

4

86-87

Доказательство неравенств

2

88

Контрольная работа №8 по теме: «Решение неравенств и систем неравенств с одной переменной»

1

Степень с целым показателем и её свойства (7 часов)

89-90

Определение степени с целым отрицательным показателем

2

91-92

Свойства степени с целым показателем

2

93

Стандартный вид числа

1

94

Решение задач по теме: «Степень с целым показателем»

1

95

Контрольная работа №9 по теме: «Степень с целым показателем»

1

Элементы статистики (4 часа)

96-97

Сбор и группировка статистических данных

2

98-99

Наглядное представление статистической информации

2

Итоговое повторение  (6 часов)

100-104

Повторение

5

105

Административная итоговая контрольная работа

1

 

9 класс

№ урока

Название темы

Кол-во часов

 

 

Глава 1.Квадратичная функция.

25

 

1-3

Повторение курса алгебры 8 класса

3

 

 

§1.Функции и их свойства.

 

 

4-5

Функция. Область определения и область значения функции.

2

 

6-7

Свойства функций.

2

 

 

§2.Квадратный трехчлен.

 

 

8

Квадратный трехчлен и его корни.

1

 

9-11

Разложение квадратного трехчлена на множители.

3

 

12

Контрольная работа №1 по теме «Функции и их свойства.

1

 

 

Квадратный трехчлен»

 

 

 

§3.Квадратичная функция и ее график.

 

 

13

Работа над ошибками. Функция y=ax2 , ее график и свойства

1

 

14

Функция y=ax2 е график и свойства.

1

 

15-16

Графики функций y = ax2 + n и y = a(x - m)2 .

2

 

17-19

Построение графика квадратичной функции.

3

 

 

§4.Степенная функция. Корень п-ой степени.

 

 

20

Функция у=хп

1

 

21-22

Корень п-ой степени.

2

 

23-24

Степень с рациональным показателем.

2

 

25

Контрольная работа №2 по теме «Квадратичная функция. Степенная функция»

1

 

 

Глава 2.Уравнения и неравенства с одной переменной

13

 

 

§5.Уравнения с одной переменной.

 

 

26-28

Целое уравнение и его корни

3

 

29-32

Дробные рациональные уравнения.

4

 

 

§6.Неравенства с одной переменной.

 

 

33-34

Решение неравенств второй степени с одной переменной.

2

 

35-37

Решение неравенств методом интервалов.

3

38

Контрольная работа №3 по теме «Уравнения и неравенства

1

 

с одной переменной»

 

 

§7.Уравнения с двумя переменными и их системы.

16

39-40

Уравнение с двумя переменными и его график

2

41-43

Графический способ решения систем уравнений

3

44-48

Решение систем уравнений второй степени

5

49

Решение задач с помощью систем уравнений второй степени

1

 

§8.Неравенства с двумя переменными и их системы.

 

50-51

Неравенства с двумя переменными

2

52-53

Системы неравенств с двумя переменными

2

54

Контрольная работа №4 по теме «Уравнения и неравенства

1

 

с двумя переменными»

 

 

Глава 4.Арифметическая и геометрическая прогрессии

15

 

§9.Арифметическая прогрессия.

 

55-56

Последовательности

2

57-58

Определение  арифметической  прогрессии Формула n-го члена арифметической прогрессии

2

59-61

Формула суммы п первых членов арифметической прогрессии.

3

62

Контрольная работа №5 по теме «Арифметическая прогрессия»

1

 

§10.Геометрическая прогрессия.

 

63-64

Определение  геометрической  прогрессии. Формула n-го члена геометрической прогрессии

2

65-67

Формула суммы п первых членов геометрической прогрессии

3

68

Обобщающий урок. Подготовка к контрольной работе

1

69

Контрольная работа № 6 по теме «Геометрическая прогрессия»

1

 

§11.Элементы комбинаторики.

 

70-71

Примеры комбинаторных задач.

2

72-73

Перестановки

2

74-75

Размещения

2

76-77

Сочетания

2

78

Перестановки. Размещения. Сочетания.

1

 

§12.Начальные сведения из теории вероятностей.

 

79

Относительная частота случайного события

1

80

Вероятность равновозможных событий

1

81

Обобщающий урок. Подготовка к контрольной работе

1

82

Контрольная работа №7 по теме «Элементы

1

 

комбинаторики и теории вероятностей»

 

 

Повторение. Подготовка к ОГЭ.

20

83

Работа над ошибками. Функции и их свойства.

1

84-85

Функции и их свойства. Подготовка к ГИА

2

86

Квадратный трѐхчлен. Подготовка к ОГЭ

1

87-88

Квадратичная функция и еѐ график. Подготовка к ОГЭ

2

89-90

Степенная функция. Корень п-ой степени.

Подготовка к ОГЭ

2

91-93

Уравнения и неравенства с одной переменной. Подготовка к

3

94-95

Арифметическая и геометрическая прогрессии. Подготовка к ОГЭ

2

96

Элементы комбинаторики и теории вероятностей. Подготовка к ОГЭ

1

97

Подготовка к итоговой контрольной работе

1

98

Итоговая контрольная работа

1

99

Итоговый урок

1

100

Обобщающий урок

1

101-102

Подготовка к ОГЭ

2